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Abstract

Designers of switching filter circuits are often interested in steady-state and
intermodulation distortion due to both static effects, such as nonlinearities in the
capacitors, and dynamic effects, such as the charge injection during MOS transistor
switching or slow operational amplifier settling. Steady-state distortion can be computed
using the circuit simulation program SPICE, but this approach is computationally very
expensive. Specialized programs for switched capacitor filters can be used to rapidly
compute steady-state distortion, but do not consider dynamic effects. In this paper we
present a new mixed frequency-time approach for computing both steady-state and
intermodulation distortion. The method is both computationally efficient and includes
both static and dynamic distortion sources. The method has been implemented in a
C program, Nitswit, and results from several examples are presented.

88 1122 042

Microsystems Massachusetts Cambridge Telephone
Research Center Institute Massa '- (617) 253-8138
Room 39-321 of Technology 02139



:. 4

A Mixed Frequency-Time Approach for Accesion ForI

Distortion Analysis of Switching Filter NTIS -
Circuits M-C TAB LI

K. Kundert, J. White, A. Sangiovanni-Vincentelli . . ' .............
Dept. of Electrical Engineering and Computer Science Ey -

Massachusetts Institute of Technology . ,
Cambridge, MA 02139 . . . .

Abstract C- I ... ,

Designers of switching filter circuits are often interested in steady-state and intermodulation distortion due to both static effects, such as ] i
nonlinearities in the capacitors, and dynamic effects, such as the charges A-1
injection during MOS transistor switching or slow operational amplifier ........ ....

gO settling. Steady-state distortion can be computed using the circuit simula-
tion program SPICE, but this approach is computationally very expensive.
Specialized programs for switched capacitor filters can be used to rapidly
compute steady-state distortion, but do not consider dynamic effects. In
this paper we present a new mixed frequency-time approach for comput-
ing both steady-state and intermodulation distortion. The method is both
computationally efficient and includes both static and dynamic distortion
sources. The method has been implemented in a C program, Niswit, and
results from several examples are presented.

1 Introduction

In general, analog circuit designers rely heavily on circuit simulation programs

like SPICE [nage175] or ASTAP [weeks73] to insure the correctness and the per-

formance of their designs. These programs simulate a circuit by first construct-

ing a system of differential equations that describes the circuit, and then solving

the system numerically with a time discretization method such as backward-

Euler. When applied to simulating switching filter circuits, such as the switched-
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capacitor filters used in integrated circuits or the switching converters used in

high power applications, the classical circuit simulation algorithms become ex-

traordinarily computationally expensive. This is because the period of the clock

is usually orders of magnitude smaller than the time interval of interest to a de-

signer. The nature of the calculations used in a circuit simulator implies that an

accurate solution must be computed for every cycle of the clock in the interval

of interest, and this can involve thousands of cycles.

The most common approach to reducing the computational burden of switch-

ing filter simulation is to first to break the circuit up into functional blocks such

as operational amplifiers and switches. Each functional bock is simulated, using

a traditional circuit simulator, for some short period. The simulations of the

functional blocks are used to construct extremely simple macromodels, which

replace the functional blocks in the circuit. The result is a much simplified

circuit that can be simulated easily. This simplified circuit is then simulated

for the thousands of clocks cycles necessary to construct a solution meaningful

enough to verify the design.

In programs specifically for switched-capacitor filters, like Diana [deman8O]

and Swdicap [tsividis83], the simulation efficiency is enormously increased by the

use of the "slow-clock" approximation. After each clock transition, every node

in the circuit is assumed to reach its equilibrium point before another transition

occurs. This assumption, along with the use of algebraic macromodels, allow

the filter to be treated as a discrete-time system with one time point per clock

transition. A set of difference equations is then used to describe the filter.

Specialized simulation programs are extremely efficient for determining fre-

quency and time domain response of switching filters, but macromodels in gen-

eral, as well as the "slow clock" approximation, tend to ignore second-order
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effects that can change distortion characteristics. In particular, as switching fil-

ters are being pushed to operate at ever higher frequencies, the assumption that

signals reach equilibrium between clock transitions is often violated. Also, since

signals between clock transitions are not computed, it is possible to miss events

that occur in these intervals that might interfere with proper operation and

contribute to distortion (e.g., clock feed-through spikes causing an operational

amplifier to saturate). Lastly, it is not possible to capture the effects of dynamic

distortion processes, such as the important effect of the channel conductance on

charge redistribution when a transistor switch turns off.

In this paper we present another approach to the simulation of switching fil-

ter circuits that is very efficient for calculating steady-state or intermodulation

distortion, but does not depend on macromodels or the slow clock approxima-

tion. The method exploits the property of switching filter circuits that node

voltage waveforms over a given high frequency clock cycle are similar, but not

exact duplicates, of the node voltages waveforms in proceeding or following

cycles. This suggests that it is possible to construct a solution accurate over

many high frequency clock cycles by calculating the solution accurately for a

few selected cycles.

In the next section we begin by describing our assumptions about switching

filter circuits and presenting the mixed frequency-time method. In Section 3,

we discuss some of the computations involved in the method. In Section 4 we

briefly describe our program, Niti, and present comparison and application

results. Finally, in Section 5, we present our conclusions and acknowledgements.
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2 The Mixed Frequency-Time Method

Very little can be assumed about the behavior of the node voltage waveforms in

a switching filter circuit over a given clock cycle, because the circuits involved

are very nonlinear and are usually switching rapidly. However, the node voltage

waveforms over a whole clock cycle usually vary slowly from one cycle to the

next, as controlled by the input signal. This implies that if the input is periodic,

and the switching filter circuit is in steady-state, then the sequence formed by

sampling the node voltages at the beginning of each clock cycle is periodic (Fig.

1). We derive our method by assuming this to be true, and further assuming

that the periodic function that describes the sequence of initial points in each

clock cycle can be accurately represented as a truncated Fourier series using few

terms.

If the sequence of initial points of each clock cycle can be described by a

Fourier series with J terms, then once J initial points are known, all the initial

points are known. This implies that given our Fourier assumption, to compute

the steady state behavior of a switching filter circuit we need only find the initial

points of J clock cycles (a similar idea in a different context was presented in

[chua8l]).

In the next two subsections we describe two relationships that can be ex-

ploited to construct a nonlinear algebraic system of J equations in J initial

points (solving this system is discussed in Section 3). The first relation, de-

scribed in section 2.1, is derived from the Fourier series assumption, and is a

linear relationship between the initial points of an evenly distributed set of J cy-

cles and the initial points of the corresponding J cycles that immediately follow

(Fig. 2). The second relation is derived from solving the differential equation

system that describes the analog circuit, for the time interval of one clock cycle,
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J times, each time using one of the distributed set of J initial points as an

initial condition. This results in another set of values for the initial points of

the following J cycles. Insisting that this set match the set resulting from the

Fourier relation yields a nonlinear algebraic system in J unknowns, which can

be solved for the J initial points, and this is described in section 2.2.

2.1 The Delay Operator

Consider the sequence of initial points of each clock cycle at some circuit node

n, and denote the sequence by vn(rl), vn(r2),.. ., vn(rs) where S is the number

of clock cycles in an input period (Fig. 1). If it is assumed that this sequence

can be accurately approximated by a truncated Fourier series, then

K
V.(r.) = Vo + EM C cos kwr. + V(S sin kwr.), (1)

k=1

where w is the fundamental frequency of the input signal, K is the number

of harmonics and J = 2K + 1 is the number of unknown coefficients. Given

(1), there is a linear relation between any collection of J initial points and any

other collection of J initial points. However, as mentioned above, we are most

interested in the linear operator that maps a collection v(r,,), v(r,",) into

v(r', + T),... ,v(rn, + T) where T is the clock period and {qi..... is a

subset of 11, S} (Fig. 2). This linear operator will be referred to as the

delay matrix.

Deriving the delay matrix is a two stage process. First, the J points v(r,,,), .... v(r,,)

are used to calculate the Fourier coefficients. Then the Fourier series (using these

coefficients) is evaluated at the J times, r, + T,- ... r,, + T. The Fourier coef-

ficients are then eliminated to yield the desired direct relation. To compute the

Fourier coefficients, write (1) as a system of J linear equation in J unknowns
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[kundert88aj.
V0 1

Vc I S ~ Ta

= r (2)

where r-1 E NJ' is given by

I coswr,, sinwr, , ... cosKwrq, sinKwrq,
I coswrij, sinwri .. cosKwr,,, sinKwr,

I coswrs sinwr, .-. cosKwr. sinKwr, (3)

coswr,?, sinwr,7 . cosKwr, sinKwr,,

The matrix r- 1 maps the Fourier coefficients to a sequence and is referred to

as the inverse discrete Fourier transform. If the times r,, ..... r. are reasonably

evenly distributed over one period of the input signal, then r-, is invertible. Its

inverse, the forward discrete Fourier transform, is denoted by r. We can also

write

VI C v.(r,, + T)

r-1 (T) . I- vn(rq + T) ,(4)

,j v,,(r,, + T)

where r- 1 (T) E NxJ is given by

I cosw(r,, +T) sinw(r., + T) sinKw(r,, +T)
I cosw(r,2 + T) sinw(r,, + T) ... sin Kw(r,, + T)I cosw(r7. +T) sinw(r., +T) ".. sinKw(rs, +T) (5)

1 cosw(r., +T) sinw(r,, +T) ... sinKw(r,j +T)

Given a sequence, a delayed version is computed by applying r to the sequence to

compute the Fourier coefficients, and then multiplying the vector of coefficients
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by r-,(T).
v.(t, + T) 1v.(r,,)]

+ T) r-1(7)r :(6)

v.(7", + T) v.(r,,)
Thus, the delay matrix, V(T) E Rx'', is defined as

)(T) = r-1(T)r. (7)

As the delay matrix is a function only of w, K, {r. ..... r,,} and T, it can be

computed once and used for every node.

In this derivation it was assumed that the sequence of cycle initial points

is well represented by a truncated Fourier series of a single fundamental. If

intermodulation distortion is to be calculated, the input will be the sum of two

frequencies, and in that case the cycle initial points will be described by a gen-

eralized Fourier series with more than one fundamental frequency [kundert88].

The derivation of the delay operator for this generalized case is a straightfor-

ward extension of the steps used above. The delay operator so generated will

still relate v(rn,1 ), .... , v(r,s ) to v(r., + T),..., v(r, + T), but J will be equal

to the total number of terms in the generalized Fourier series.

2.2 The Differential Equation Relation

We assume that any switching filter circuit to be simulated can be described by

a system of differential equations of the form

d

j,-q(v(t), u(t)) + i(v(t), u(t)) = 0, (8)

where v(t) E RN is the vector of node voltages, u(t) E RM is the vector of input

sources, q(v(t), u(t)) E RN is the vector of sums of charges at each node, and

i(v(t), u(t)) E RN is the vector of sums of currents entering each node. If the
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node voltages are known at some time to, it is possible to solve (8) and compute

the node voltages at some later time tj. In general, one can write

v(t 0 = 4,(vto), to, t 1) (9)

where 4, is referred to as the state transition function for the differential equation

and can be expanded as

40(v(to), to, ti) = (10)I4Nto*), to, ii)

Now reconsider the J initial points at some circuit node n, ,(,).

V,(r,,) (Fig 2). For each j E { 1,. .. ,J7} and each n E I{I,-., NJ we can write

v,,(r,,, + T) =4(r,) Ir,,+ T) (11)

where T is the clock period. Note that v,,(r,, + T) is the initial point of the

cycle immediately following the cycle beginning at r,,. Also, the node voltages

at. T,,, can be related to the node voltages at r,,, + T by the delay matrix, V(T).

That is, V~q n,,,+T

'D(T) (12)

Ivn(r,,,)J .(rq, + T)J

It is possible to use (11) to eliminate the v,(I,+ T) trim from (12), which

yields

V(7)I1 (13)

for each n E{I.NJ.
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3 Solution by Newton-Raphson

The collection of equations given in (13) can be reorganized into a system of

NJ equations in NJ unknowns as
Vi(7q1 ) &I(V(Tq1),Tq,, q, + T)

t(Tv~r1 ) )VN(r") ON(V(,,), r;, r,,. + T)

F : = 'DN(T) - (14)

,(*v) VI(r,,') &(V(Tq,),-,,,-T, + T)

VN(7,. ) ON(v(rq,), r,,, rqj + T)

and

F ( :; =0, (15)

where F *NJ RNJ and DN E RNJX NJ is given by

*4djIN • dIJIN 1
VN(T) = (16)

dJ I'IN . . d.JJ I N I

where di, E R is the ijth element of the delay matrix D(T), and IN E RN is the

identity matrix.

Applying Newton's method to (14) leads to the iteration equation

JF ( ) =(+)rt -F IV (17),

where I is the iteration number and JF E RNJXNJ is the Frechet derivative of

F given by
(00(v(T..), r,, ., ,1+ T) 490(*'0' r), j, +q +T).

N(T) - diag ( Ov(tq ) ...... 801 T)+ ) (18)

There are two important pieces to the computation of one Newton iteration:

factoring the matrix Jr, which is sparse, and evaluating JF and F, which in-

volves computing the state transition function, r(v(?,), r, ii, + T), and its
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derivative for each j E { 1..... J}. The state transition functions can be eval-

uated by numerically integrating (8) over the J periods. The derivatives of

the state transition functions, referred to as the sensitivity matrices, can be

computed with a small amount of additional work during the numerical inte-

gration[trick75].

To show how the computation of the state transition function and its deriva-

tive fit together, consider numerically integrating (8) with backward-Euler,

which we chose for simplicity and because it appears to be one of the best

formulas for switching filter circuits. Given some initial time to and some ini-

tial condition, v(t0), applying backward-Euler to (8) results in the following

algebraic equation,

f(v(to + h), v(to)) = T(q(v(to + h)) - q(v(to))) + i(v(to + h)) = 0 (19)

where h E R is the timestep. Note we have dropped explicitly denoting the

dependence of q and i on the input u for simplicity.

Equation (19) is usually solved with Newton-Raphson, for which the iteration

equation is

J(v(')(to+ h))(v(*'+)(to + h) - v(')(to + h)) = -f(v(')(to + h), v(')(to)) (20)

where J1 (v(t)) E RN"N is the Frechet derivative of the nonlinear equation in

(19) and is given by

M (v(t),V(to)) 1 Oq(v(t)) oi(v(t)) (21)
Ov(t) -h Ov(t) Ov(t)

Solving (19) yields an approximiation to v(to + h) = *(v(to), to, to + h).

Implicitly differentiating (19) for v(to + h) with respect to v(to) yields

+h v(to + h) 1 Oq(v(to)) Ov(to)

Jj(v(to+ h)) Ov(to) OV(to) v(to) (22)
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Note here that a t8) E 9?vNX is the identity matrix and in general , 7 E

RNN is not the identity.

Given v(to), (19) can be repeatedly applied to find v(to+T) = O(v(to), to, to+

T), and (22) can be repeatedly applied to find the sensitivity matrix Ov(to +

T)/Ov(to) = 00(v(to), to, to + T)/av(to). Note that J1 is required in both (20)

and (22), and thus the sensitivity matrix update can be made more efficient by

factoring J1 once and using it for both computations. However, the sensitivity

matrix is still expensive to compute, because it is an N x N full matrix. We

return to this point at the end of section 4.

4 Implementation in Nitswit

Both the classical direct methods and the mixed frequency-time methods have

been implemented in the simulation program Nitswit, which is written in the

computer language "C." Nitswit takes as input a file with a SPICE-like de-

scription of the circuit, that is, a list of elements (MOS transistors, resistors,

capacitors, etc) with their node connections, and a list of options to select among

methods. If the mixed frequency-time method is used, a switching clock period

and one or two input frequencies (two for intermodulation distortion) along with

a number of harmonics must be specified. The program produces some form

of transient waveforms and Fourier series coefficients, depending on the options

selected.

4.1 Application Examples

To demonstrate the effectiveness of the algorithms used in the Niswit program,

we consider analyzing the distortion of a switched-capacitor low pass filter.

Nitswit is particularly efficient for switched-capacitor filters for several reasons.

First, a switched-capacitor filters is usually followed by a sampler, and so only
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the initial point of each cycle is needed. Second, the circuits are designed so that

the distortion present in the sequence of initial points is small, so if driven by a

sinusoid, only a few harmonics are significant and only a few clock cycles need

to be computed. Finally, the state transition function for a switched-capacitor

filter over a clock cycle is nearly affine (linear plus a constant), and therefore

the Newton method in (17) converges in just a few iterations.

Tables I and 2 show the results when Nitswit is used to compute the distor-

tion produced by a single-pole switched-capacitor low-pass filter with a clock of

500KHz, a bandwidth of 30KHz, and an input frequency of 20KHz. To simulate

the effect of nonlinear filter capacitance on distortion, the filter capacitors are

assumed to be first order voltage-controlled nonlinear capacitors with capaci-

tance c = co(1 + acv). In Table 1, the distortion, specifically the magnitude of

the first two harmonics, is given for several different values of a. The distor-

tion for the same low-pass filter circuit with linear filter capacitors is given ,' a

function of the clock rise and fall time in Table 2.

a Mag. First Harm. Mag. Sec. Harm.
0.001 0.00057 0,00010
0.01 0.0014 0.00007
0.1 0.0101 0.00024

Table 1. Nitswit Relative distortion results for a switched-capacitor low-pass

filter as a function of increasing filter capacitor nonlinearity.

Clock Mag. First Harm. Mag. Sec. Harm.
Ins 0.000020 5.99e-7

IOns 0.00020 0.000037
lOOns 0.0018 0.000054

Table 2. Nitswit distortion results for a switched-capacitor low-pass filter as a

function of increasing clock rise and fall time.
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4.2 Comparison to Direct Methods

The program Nitswit contains two algorithms capable of finding the steady-state

response of a circuit. The first is simply a transient analysis that continues until

a steady-state is achieved. The second, of course, is the mixed frequency-time

algorithm. Coding both algorithms into the same simulator provides a fair

evaluation of the mixed frequency-time approach.

Results for five circuits are given in Table 3 below. The first, sclpf, is an RC

one-pole SC filter. The second, scop, is a one-pole active CMOS low pass filter.

The last circuit, mixer, is a double-balanced switching mixer with a 1.001 MHz

rf and a 1MHz input.The last, frog, is a five pole Chebyshev active CMOS leap

frog filter with 0.1dB ripple. This circuit is driven with a 1MHz clock, has a

20kHz bandwidth, and is being driven with a IkHz test signal to measure its

fi distortion.

circuit direct mixed frequency-time
name nodes cycles/ time harmonics, Newton time

period (sec) cycles iterations (sec)
Sclpf 2 33 24.5 3,7 3 4.3
scop 13 100 522 3,7 6 90
mixer 34 1000 7132 3,7 4 161
frog 77 1000 12,987 3,7 6 1228

Table 3. Nitswit results from a VAX 8650 running ULTRIX 2.0.

Examination of the results above indicate as much as an order of magnitude

speed increase over traditional methods, but this is not as much as one would

expect. Much of the CPU time for large circuits, such as frog, is spent calculating

the dense sensitivity matrix and factoring the Jacobian in (18). It does turn

out however, that almost all the entries of the sensitivity matrix are near zero,

and this suggests significant speed improvements can be achieved by ignoring

those terns. In addition, we expect to get improved performance by switching
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to relaxation techniques to solve (14). Preliminary experiments indicate the

relaxation converges quickly and reliably, and is much faster than sparse LU

factorization.

5 Conclusion

A new efficient mixed frequency-time approach to computing steady-state and

intermodulation distortion of switching filters without resorting to macromod-

eling or the slow-clock approach has been presented. The method works by

computing the solution to the differential equation system associated with a

circuit for only J clock cycles, where J is the number coefficients needed in the

Fourier series to represent accurately the sequence of initial points in each clock

cycle. Thus, this method is particularly efficient when the number of coefficients

in the Fourier series is many fewer than the number of clock cycles in one input

signal period.

Since our approach finds the steady-state solution directly and performs a

circuit-level simulation, it is capable of accurately predicting distortion perfor-

mance. This mixed frequency-time approach can also be used when the input

consists of the sum of two periodic signals at unrelated frequencies. Thus, the in-

termodulation distortion can be directly computed, which is particularly useful

for bandpass filters. Also, the fact that steady-state is computed directly implies

an additional advantage over transient methods when high-Q filters are simu-

lated. One final point, the mixed frequency-time method can also be adapted

to the macromodeling approach used in other switching filter simulators, accel-

erating those methods as well when the steady-state solution is desired.

Future work on this method will be to adapt it to other traditionally hard-to-

simulate circuits like switching power supplies and phase-locked loops. Another
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important aspect of this algorithm is that, upon examination of (14), it is clear

that the J integrations of the differential equation to compute the J #'s and

their derivatives are independent. The other step, solving the sparse matrix

problem in (17), seemns, as mentioned above, to be very amenable to solution

by relaxation. Therefore, the mixed frequency-time algorithm is extremely well

suited to implementation on a parallel processor.
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Figure 1: The response of a switching filter circuit to a periodic function, with
the initial points of each cycle denoted.
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Figure 2: The response of a switching filter circuit and the periodic function of
the initial points. The J cycles used in the calculation are emphasized.
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